일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- lstm
- 파이썬 주식
- 실기
- docker
- Crawling
- SQL
- 볼린저밴드
- Programmers
- 데이터분석전문가
- 파이썬
- 빅데이터분석기사
- randomforest
- TimeSeries
- 주식
- 비트코인
- sarima
- 코딩테스트
- 프로그래머스
- backtest
- 토익스피킹
- 파트5
- ADP
- GridSearchCV
- 변동성돌파전략
- hackerrank
- 백테스트
- Quant
- Python
- PolynomialFeatures
- 데이터분석
- Today
- Total
목록GridSearchCV (6)
데이터 공부를 기록하는 공간

kaggle > restaurant revenue 1. EDA import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') pd.options.display.max_columns=None train_df = pd.read_csv("./restaurant-revenue-prediction/train.csv") test_df = pd.read_csv("./restaurant-revenue-prediction/test.csv") train_df['part'] = 'train' test_df['part'] = 'test..

kaggle > forest cover type 1. 데이터 임포트 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') train = pd.read_csv("./forest-cover-type-prediction/train.csv") test = pd.read_csv("./forest-cover-type-prediction/test.csv") print(train.shape, test.shape) train = pd.read_csv("./forest-cover-type-prediction/train.cs..