일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- lstm
- 파이썬 주식
- 프로그래머스
- 데이터분석
- ADP
- 파이썬
- Crawling
- SQL
- 비트코인
- Programmers
- randomforest
- TimeSeries
- 변동성돌파전략
- 백테스트
- 토익스피킹
- 코딩테스트
- hackerrank
- 볼린저밴드
- PolynomialFeatures
- GridSearchCV
- 빅데이터분석기사
- 데이터분석전문가
- docker
- backtest
- Quant
- 파트5
- 주식
- sarima
- Python
- 실기
- Today
- Total
목록데이터분석 (5)
데이터 공부를 기록하는 공간

1. library import import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-whitegrid') from datetime import datetime import statsmodels.api as sm from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.statespace.sarimax import SARIMAX from matplotlib.pyplot import ..

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') train = pd.read_csv('./titanic/train.csv') test = pd.read_csv('./titanic/test.csv') 1. 데이터 전처리 # check null data train.isnull().sum() test.isnull().sum() # category, numeric feature seperation target = 'Survived' train[target].value_counts() features = tr..

kaggle > restaurant revenue 1. EDA import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') pd.options.display.max_columns=None train_df = pd.read_csv("./restaurant-revenue-prediction/train.csv") test_df = pd.read_csv("./restaurant-revenue-prediction/test.csv") train_df['part'] = 'train' test_df['part'] = 'test..

kaggle > forest cover type 1. 데이터 임포트 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') train = pd.read_csv("./forest-cover-type-prediction/train.csv") test = pd.read_csv("./forest-cover-type-prediction/test.csv") print(train.shape, test.shape) train = pd.read_csv("./forest-cover-type-prediction/train.cs..