일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- sarima
- Quant
- 코딩테스트
- PolynomialFeatures
- Programmers
- 빅데이터분석기사
- 백테스트
- backtest
- Crawling
- TimeSeries
- 실기
- SQL
- 변동성돌파전략
- 프로그래머스
- ADP
- GridSearchCV
- 파이썬 주식
- hackerrank
- 주식
- 파이썬
- 볼린저밴드
- 비트코인
- Python
- docker
- 데이터분석
- 파트5
- 토익스피킹
- lstm
- 데이터분석전문가
- randomforest
- Today
- Total
목록PolynomialFeatures (3)
데이터 공부를 기록하는 공간

1. 데이터 전처리 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv("./mobile_cust_churn/mobile_cust_churn.csv") df.drop(columns=['Unnamed: 0','id'], axis=1, inplace=True) target = 'CHURN' features = df.columns.tolist()[:-1] numeric_features = df.select_dtypes(include=['int64']).columns.tolist() category_features= [] for col in features: if co..

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') train = pd.read_csv('./titanic/train.csv') test = pd.read_csv('./titanic/test.csv') 1. 데이터 전처리 # check null data train.isnull().sum() test.isnull().sum() # category, numeric feature seperation target = 'Survived' train[target].value_counts() features = tr..

1. EDA 및 데이터 전처리 2. 다중공선성 처리 3. Train/Valid/Test set으로 분리하기 4. 교호작용 고려 모델링 및 평가 # library import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # data train = pd.read_csv("./house-prices-advanced-regression-techniques/train.csv") test = pd.read_csv("./house-prices-advanced-regression-techniques/test.csv") # data shape print(train.shape, test.shape) # data s..