일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- backtest
- 코딩테스트
- docker
- 변동성돌파전략
- randomforest
- TimeSeries
- Python
- PolynomialFeatures
- 프로그래머스
- 데이터분석
- ADP
- Quant
- 실기
- 파트5
- 파이썬 주식
- sarima
- 빅데이터분석기사
- hackerrank
- lstm
- 주식
- 토익스피킹
- Crawling
- SQL
- 비트코인
- 볼린저밴드
- 파이썬
- GridSearchCV
- 데이터분석전문가
- Programmers
- 백테스트
- Today
- Total
목록STOCK/비트코인 (19)
데이터 공부를 기록하는 공간

df = pd.read_csv("20220103_btc_minute5_90days.csv").rename(columns = {"Unnamed: 0":'datetime'}).set_index("datetime") df = df[['close','volume']] data = df.copy() data['return'] = np.log(data['close']/data['close'].shift(1)) data['volumeR'] = np.log(data['volume']/data['volume'].shift(1)) data.dropna(inplace=True) data['direction'] = np.where(data['return']>0, 1, 0) lags = 3 cols = [] for lag in..

pred.sum() # df = pyupbit.get_ohlcv("KRW-BTC", "minute5", count=12*24*30*3) df = pd.read_csv("20220103_btc_minute5_90days.csv").rename(columns = {"Unnamed: 0":'datetime'}).set_index("datetime") df = df[['close','volume']] df data = df.copy() data['return'] = np.log(data['close']/data['close'].shift(1)) data.dropna(inplace=True) data['direction'] = np.where(data['return']>0, 1, 0) lags = 5 cols ..

(참고) 파이썬을 활용한 알고리즘 트레이딩 6장 data = df.copy() data['return'] = np.log(data['close']/data['close'].shift(1)) data.dropna(inplace=True) data['direction'] = np.where(data['return']>0, 1, 0) lags = 5 cols = [] for lag in range(1, lags+1): col = "lag_{}".format(lag) data[col] = data['return'].shift(lag) cols.append(col) data.dropna(inplace=True) data import tensorflow as tf from keras.models import Seq..

(참고) 파이썬을 이용한 알고리즘 트레이딩 5장 data = df.copy() data['return'] = np.log(data['close']/data['close'].shift(1)) data.dropna(inplace=True) lags = 3 cols = [] for lag in range(1, lags+1): col = "lag_{}".format(lag) data[col] = data['return'].shift(lag) cols.append(col) data.dropna(inplace=True) data from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression lm = Logis..