일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 |
- backtest
- lstm
- ADP
- 파이썬 주식
- SQL
- 볼린저밴드
- Crawling
- Programmers
- PolynomialFeatures
- 비트코인
- 백테스트
- docker
- 코딩테스트
- 빅데이터분석기사
- TimeSeries
- 변동성돌파전략
- 토익스피킹
- randomforest
- 파이썬
- GridSearchCV
- hackerrank
- 파트5
- 데이터분석
- sarima
- 데이터분석전문가
- 주식
- Quant
- Python
- 프로그래머스
- 실기
- Today
- Total
목록STUDY/ADP, 빅데이터분석기사 (17)
데이터 공부를 기록하는 공간

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') df = pd.read_csv('./Mall_Customers/Mall_Customers.csv') print(df.shape) df.head(3) df = df.rename(columns = {"Annual Income (k$)": "income", "Spending Score (1-100)":"score", "Gender":"gender", "Age":"age"}) sns.pairplot(df, hue='gender') df.drop('Custome..

1. 데이터 전처리 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv("./mobile_cust_churn/mobile_cust_churn.csv") df.drop(columns=['Unnamed: 0','id'], axis=1, inplace=True) target = 'CHURN' features = df.columns.tolist()[:-1] numeric_features = df.select_dtypes(include=['int64']).columns.tolist() category_features= [] for col in features: if co..

1. library import import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-whitegrid') from datetime import datetime import statsmodels.api as sm from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.statespace.sarimax import SARIMAX from matplotlib.pyplot import ..

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') train = pd.read_csv('./titanic/train.csv') test = pd.read_csv('./titanic/test.csv') 1. 데이터 전처리 # check null data train.isnull().sum() test.isnull().sum() # category, numeric feature seperation target = 'Survived' train[target].value_counts() features = tr..